AMD Operating System Research Center

Tapper

Test and Automation
Infrastructure

Manual

Tapper

Test and Automation
Infrastructure

Manual

AMD Operating System Research Center
Steffen Schwigon, Maik Hentsche
Copyright 2008-2012

Contents

1 Overview
1.1 Infrastructure
1.1.1 Automation e
1.1.2 Scheduling
1.1.3 Web Application
1.1.4 Result Evaluation
1.1.5 Testplan Support oL
1.1.6 Support for writing tests
1.2 Many USe-Cases v v v i e e e e e e e e e e
1.3 Technology e
1.4 Correlation to autotest.kernel.org Lo o oL
2 Synopsis
2.1 Tapper infrastructure
2.2 Vocabulary
2.2.1 Master Control Program (MCP)
2.2.2 Program Run Control (PRC)
2.2.3 Reports Receiver oo
2.2.4 Reports API e
2.2.5 Web User Interface
226 ReportsDB e
227 Testrun DB
2.2.8 Testrun e e e
2.2.9 Preconditionso
2.2.10 Report o e
2.2.11 Test Anything Protocol (TAP)
2.2.12 TAP archives
3 Technical Infrastructure
3.1 Adding a new host into automationo L
3.1.1 Make machine remote hard resetable
3.1.2 Machine specific configuration L L L
3.1.3 Make machine PXE boot aware
3.1.4 Configure TFTP on central MCP machine
3.1.5 Make the hosts known in the TestrunDB
3.1.6 Optionally: enable temare to generate tests for thishost
3.1.7 Optionally: Web server for autoinstall
4 Test Protocol
4.1 Test Anything Protocol (TAP)
4.2 Tutorialo
4.2.1 Just plan and success Lo
4.2.2 Succession numbers L L
4.2.3 Test descriptions
424 Mark tests as TODO
4.2.5 Comment TODO tests withreason

10
10
10
10
11
11
11
11
11
12
12

12
12
13
13
13
13
13
13
14
14
14
14
14
14
14

14
14
15
15
17
17
18
18
19

19
19
19
19
20
20
20
21

Contents

4.2.6 Mark tests as SKIP (with reason) 21
4.2.7 Diagnostics 21
4.2.8 YAML Diagnosticso o 22
4.2.9 Meta information headers for reports oL oL 22
4.2.10 Report sections L 23
4.2.11 Meta information headers for report sections 24
4.2.12 Meta information structure summaryo 25
4.2.13 Explicit section markers with lazy plans 26
4.2.14 Developing with TAP 27
4.2.15 TAP tips o e 27

4.3 Particular use-cases L 28
4.3.1 Report Groups 28

4.4 TAP Archives e 28
4.5 Reporting TAP to the reports receiver 28
4.5.1 Submitting raw TAP 29
4.5.2 Submitting TAP Archives 29

5 Test Suite Wrappers 29
5.1 Available test suite wrappers 29
5.1.1 tapper-testsuite-autotest Lo oL 30

5.2 Environment variables 30
6 Preconditions 30
6.1 SYNOPSIS 31
6.2 Layers of preconditions 31
6.3 Precondition repository L 31
6.4 Overview Precondition Types o 31
6.5 Details Precondition Types o 31
6.6 Macro Preconditions L 31
6.7 Testplans L 31
6.8 Precondition Producers L 31
6.9 Layers of preconditions L 31
6.9.1 Normal preconditions 31
6.9.2 Macro preconditionso 31
6.9.3 Testplans L 32

6.10 Precondition repository Lo 32
6.11 Overview Precondition Types 32
6.11.1 Overview: Action precondition types 32
6.11.2 Overview: Highlevel precondition types 33

6.12 Details Precondition Types 33
6.12.1 installer_stop L 33
6.12.2 grub . . oL 33
6.12.3 package 34
6.12.4 copyfile 34
6.12.5 fstab oL e 35
6.12.6 Image 35
6.12.7 repository L 35
6.12.8 type: PIc. o 36

Contents

8

6.12.9 type:rexecl 36
6.12.10type: hint oL 37
6.12.11 quote subtleties L 37
6.12.12type: reboot Lo 38
6.12.13 type: autoinstall oL L 38
6.12.14 type: testprogram e e 38
6.12.15type: autoinstall L 39
6.12.16type: cobbler 39
6.12.17type: virt L 39
6.12.18 General precondition keys “mountfile” 0oL 40
6.13 Macro Preconditions Lo 41
6.13.1 A real live example - kernel boot test 41
6.14 Testplans L 43
6.15 Precondition Producers 45
6.15.1 Lazy preconditiono 45
6.15.2 Producer API 45
6.15.3 Existing producers Lo 46
6.15.4 Example: “Kernel” precondition producer 46
Command line interface 47
7.1 Commandline Synopsiso e e 47
7.2 Scheduling L 47
7.2.1 Create new queue and new host and bind both together 47
7.2.2 Change queue priority 48
7.2.3 requested features 49
7.2.4 Cancel current testrun on host 50
Web User Interface 50
8.1 Usage e 50
8.2 Understanding Tapper Details L 50
8.2.1 Part 1 Overview e 50
822 Part 2 Details 51
823 Part 3 Testrun 52
Reports API 53
9.1 OVerviewo 53
9.2 Raw API Commands 53
9.2.1 upload aka. attach a filetoareport. 53
9.2.2 download - download a file which is attached to a report 54
9.2.3 mason - Render templates with embedded query language 54
9.3 Query language DPath 55
9.3.1 Reports Filter (SQL-Abstract) 56
9.3.2 DataFilter o6
9.3.3 Optimizations 56
9.4 Client Utility tapper-api L 56
9.4.1 help . . . 57
9.4.2 upload a7
9.4.3 mMaSON e e e a7

Contents

10 Complete Use Cases 57
10.1 Automatic Xen testing o7
10.1.1 Paths 57

10.1.2 Choose an image for Dom0 and images for each guest o8

10.1.3 PRC configuration 58

10.1.4 Preconditions 29

10.1.5 Resulting YAML config L 60

10.1.6 Grub 61

10.1.7 Order Testrun o ot e 62

1 Overview

1 Overview

Tapper is an infrastructure for all aspects of testing, scaling from usage as simple test result database
to managing complete test labs with testplan scheduling, machine install automation, and complex
result evaluation.

1.1 Infrastructure

1.1.1 Automation

Network boot (PXE + TFTP + NFS)
Machine setup from scratch driven by YAML specfiles

Machine setup can be done by installing images, running kickstart/autoyast/preseed installer,
or via Cobbler

Machine setup supports virtualization (Xen and KVM)

Alternatively using pre-installed machines via ssh

Image-based or kickstart/autoyast based installation

Lightweight status API to easily plug in foreign installers

Inject packages, programs, files into hosts/guests

Control execution of test scripts in hosts/guests

Interdependent setup and sync of co-operating machines

Complex timeout handling for complete test cycle, inclusive virtualizated guest
Reboot handling

Console logging

Hardware reset

1.1.2 Scheduling

10

Optimize utilization of pools with "not enough" machines for "too many use-cases"

Multiplex queues of freely definable use-cases (e.g., Xen, KVM, baremetal kernels, ad-hoc tests,
benchmarks) with different bandwidths

Pluggable core scheduling algorithm (default "Weighted Fair Queuing")

Feature driven host matching (by memory, cores, vendor, etc. or complex combinations)
Dynamic queue and host management (add, delete, de/activate)

Host /queue binding for dedicated scheduling

Auto re-queuing for continuous testing

Multi-host scenarios

1.2 Many use-cases

1.1.3 Web Application
e Frontend to 2 databases: testruns and reports
e Providing a "management view" and high-level test result evaluation
e Overview lists and detailed zoom-in, GREEN/YELLOW /RED coloring
e Filters over time, testsuites, machines, success status
e RSS feeds on such filters
e Visualize groups of connected results (virtualized neighbour guests)

e Control start of testruns

1.1.4 Result Evaluation
e Programmable complement to the web frontend
e Allow complex queries on the test result database
e No client side toolchain neccessary
e Fasy API to send and get back queries embedded in templates

e API allows SQL and XPath like queries in an abstract way

1.1.5 Testplan Support
e Testplans combine many Tapper features into concise points of interest
e Manage testplan hierarchy allowing specfile reuse for complex testplan matrix
e Interoperation with TaskJuggler on dedicated QA tasks for automatic scheduling and reporting

e Consequently a complete focused QA life cycle of planning, execution and reporting

1.1.6 Support for writing tests
e Format test results based on standard Test Anything Protocol (TAP)
e Existing standard TAP toolchains available for about 20 programming languages

e Dedicated Tapper support for Shell, Perl, Python available

1.2 Many use-cases
e Kernel testing (stress, function, reboot)
e Virtualization Testing (Xen, KVM)

e Test matrix of host/guest combinations

Distribution testing (like OS or compilers)

Multi-machine scenarios

Complex result evaluation

11

2 Synopsis

1.3 Technology

e Platform independent (primarily x86, but already seen on ARM)

e Test Anything Protocol (TAP)

e Core system written in Perl and CPAN

e DB independent via OR mapper, developed on MySQL and SQLite
e HTML/CSS, cautious Javascript

e Language agnostic testing (e.g, Perl/Python/Shell test suites)

e PXE, GRUB, TFTP, NFS boot automation

e optional Cobbler integration

e Strong decoupling of functional layers (webgui, testsuites, automation) to allow you to amalga-
mate your own infrastructure

1.4 Correlation to autotest.kernel.org

The main focus of autotest.kernel.org project is on testing the Linux kernel. It provides a broad
coverage of kernel functionality testing and wrappers of many existing test suites.

Tapper provides many complex scenarios, like virtualization (Xen/KVM), distribution testing (RHEL,
SLES, Debian, Ubuntu), SimNow testing and benchmarking. Tapper can schedule them all multi-
plexed according to "use-case bandwidths" over large or small machine pools.

The autotest.kernel.org client can be used in a Tapper infrastructure via a thin wrapper that
utilizes the TAP export we provided to the autotest project.

Tapper then complements it with Testplan support, a result database and a homogeneous result
evaluation API.

2 Synopsis

2.1 Tapper infrastructure

Tapper is an infrastructure.

It consists of applications, tools and protocols for testing software and evaluating the results. One
initial main focus was on testing Operating Systems in virtualization environments. It is now a
modular infrastructure for lots of other, related scenarios, like benchmarking or build systems.
There are 3 important layers:

e Reports Framework
e Test Suites

e Automation System

The layers can work completely autonomously, though can also be connected together and are targeted
to be stacked in this order:

12

2.2 Vocabulary

e The Report Framework is for receiving and evaluating test reports sent by any source. The
only requirement is that the result reports are using TAP, the Test Anything Protocol.

e The Test Suites are either directed test suites or wrappers around existing test projects doing
conversion of their results into TAP. These are the TAP producers that create reports and send
them to the Reports Framework.

e The Automation System is taking care of setting up machines, installing dependencies and
test suites and running the latter. It can set up virtualized environments.

To fully exploit the system you need to learn:
e Connect and prepare a new machine into the infrastructure
e Write tests using the Test Anything Protocol (TAP)
e Write preconditions to describe automation tasks

e Review results via Web interface

Evaluate results via Report Query interface

2.2 Vocabulary
2.2.1 Master Control Program (MCP)

There is a central server controlling the automation by running the Master Control Program, aka.
MCP. Usually it also centralizes several other services: it is the TFTP server for network booting,
runs the daemons of the reports framework (reports receiver, remote api) and the web application,
including the mysql databases, and also serves the file repository via NFS.

2.2.2 Program Run Control (PRC)

When machines run automated tests, these test program runs are controlled by a Program Run
Control, aka. PRC. In virtualization scenarios, each host and guest has its own PRC, numbered
PRCO (for the host), PRC1 (1st guest), PRC2 (2nd guest), etc.

2.2.3 Reports Receiver
The Reports Receiver means the daemons that accept reports. We often run them on the same
machine as the MCP and the Web framework, but that’s not neccessary.

2.2.4 Reports API

Similar to the reports receiver is the Reports API which is the daemon for all more complex
interfaces, like uploading files, downloading files, querying the reports. Similar to reports API we
often run them on the same machine as the MCP and the Web application, but that’s not neccessary.

2.2.5 Web User Interface

The Web User Interface is an independent web application. Similar to the reports receiver and the
reports API it can run anywhere, either standalone or in Apache, via mod _perl, FCGI, etc.. The only
common thing for all those central applications (MCP, reports receiver, reports api, web application)
is the config to use the same databases.

13

3 Technical Infrastructure

2.2.6 Reports DB

The Reports DB contains all data that are reported. It’s the base for the reports receiver, the
reports API, the web application.

2.2.7 Testrun DB

The Testrun DB is the DB for the automation layer. It contains hosts, testrun specifications and
scheduling information.

2.2.8 Testrun

A Testrun is a request to the automation layer to set up a host machine and run a workload on it. It
consists of “preconditions” and scheduling information (host name, wanted host features, scheduling
queue).

2.2.9 Preconditions

Preconditions are specifications that describe how to set up a host. They are the essential part of
a testrun.

2.2.10 Report

A Report is the reported result of any workload, regardless of how it was produced (automatically,
by a tes suite, manually via echo and netcat). Its only requirement is to be formatted in TAP (the
Test Anything Protocol), or as TAP archive.

2.2.11 Test Anything Protocol (TAP)

The Test Anything Protocol aka. TAP is the syntax to describe test results.

2.2.12 TAP archives

A TAP archive is a .tar.gz file that contains files of TAP. It’s the result of a test suite that can
consist of many parts compressed into a single file.
3 Technical Infrastructure

See also the “Getting Started Guide” for more complete step-by-step instructions how to install the
infrastructure from scratch up to a first example test run.

3.1 Adding a new host into automation

This chapter describes what you need to do in order to get a new machine into the Tapper test
scheduling rotation.

14

3.1 Adding a new host into automation

3.1.1 Make machine remote hard resetable

Connect the machine physically to some facility to programmatically switch it completely off.

This can be the Reset cable wires connected to a dedicated reset box which can be programmed
usually with an external tool. It can also be a TCP/IP controllable Power Control.

As an example Tapper comes with a plugin for the “Infratec PM211 MIP” ethernet controllable multi
socket outlet. To use it write this in the configuration file:

reset_plugin: PM211MIP
reset_plugin_options:
ip: 192.168.1.39
user: admin
passwd: secret
outletnr:
johnconnor: 1
sarahconnor: 2

This configures to use the PM211MIP plugin for reset and gives it the configuration that the host
“johnconnor” is connected on port 0 and the host “sarahconnor” on port 1, together with IP address,
username and password of the multi-socket outlet.

If you have other hardware then write your own reset plugin FooBar in a Perl module
Tapper: :MCP: :Net: :Reset: :FooBar. Look into the code of Tapper::MCP::Net::Reset::PM211MIP
to get inspiration.

3.1.2 Machine specific configuration

Tapper configuration happens in /etc/tapper.cfg which contains everything that needs to be over-
written from the default values that come with the library Tapper: :Config.
Config entries for grub can be configured for defaults like this:

mcp:
installer:
default_grub: |

serial --unit=0 --speed=115200

terminal serial

default O

timeout 2

title Test run (Install)
tftpserver $TAPPER_TFTPSERVER
kernel $TAPPER_KERNEL root=/dev/nfs reboot=force ro ip=dhcp \

nfsroot=$TAPPER_NFSROOT $TAPPER_OPTIONS $HOSTOPTIONS
test:
default_grub: |

default O

timeout 2

title Test run (Execute)
root $grubroot
kernel /boot/vmlinuz root=$root reboot=force ip=dhcp noapic \

$TAPPER_OPTIONS $HOSTOPTIONS

$initrd_options

15

3 Technical Infrastructure

You can see two entries, one for the installer to boot from TFTP, and one for the actual test run after
the machine was installed. Usually the second part (for test run) is defined in a precondition because
it needs special needs.

In these grub entries the MCP substitutes several variables before the actual grub entry is written:

16

e $grubroot

Substituted with something like (hd0,1).

$root
Substituted with something like /dev/sda2.

$TAPPER_TFTPSERVER
Substituted with tfptserver IP address as configured in /etc/tapper.cfg, like:

tftp_server_address: 165.204.15.222

$TAPPER_KERNEL
Substituted with kernel image file as configured in /etc/tapper.cfg, like:

files:
kernel for installer
installer_kernel: /tftpboot/bzImage

$TAPPER_NFSROOT
Substituted with NFS root filesystem as configured in /etc/tapper.cfg, like:

paths:
Path to installer nfs root as set in PXE grub config
(IP of central host "tapper")
nfsroot: 165.204.15.222:/data/tapper/live/nfsroot/

$TAPPER_OPTIONS

Substituted with something like tapper_ip=165.204.15.222 tapper_port=1337
testrun=777777 tapper_host=tapper tapper_environment=live (as one single line),
where “tapper ip” and “tapper port” are the host and port to send status messages to,
the “testrun” is the testrun id of the current run, “tapper host” a hostname alternative to
“tapper_ip” and “tapper _environment” sets the context (“live” or “development”).

$HOSTOPTIONS
This substitution is controlled by another entry in /etc/tapper.cfg:

grub_completion_HOSTOPTIONS:
_default:
earlyprintk=serial,ttyS0,115200 console=ttyS0,115200
capalus:
earlyprintk=serial,ttyS4,115200 console=ttyS4,115200
garcia:
OxAFFE

3.1 Adding a new host into automation

There you see a default value and two entries for the hosts “capalus” (defining a different serial
interface for console) and “garcia” (defining something completely different without any console
usage).

3.1.3 Make machine PXE boot aware

e Set booting order in BIOS to network first

e Configure DHCP for each connected machine

The following example configures two hosts sarahconnor and johnconnor to use the respective
files /tftpboot/sarahconnor.lst and /tftpboot/johnconnor.lst as grub config.

example dhcp config with invalid ethernet addresses
subnet 192.168.1.0 netmask 255.255.255.0 {
group
{
filename ’/tftpboot/pxegrub’;
offer the host the here given name as host name
option host-name = host-decl-name;
option dhcp-parameter-request-list = concat(option dhcp-parameter-request-list,96);
host sarahconnor
{
hardware ethernet 00:09:11:11:11:11;
fixed-address 192.168.1.2;
option configfile "/tftpboot/sarahconnor.lst";
}
host johnconnor
{
hardware ethernet 00:09:22:22:22:22;
fixed-address 192.168.1.3;
option configfile "/tftpboot/johnconnor.lst";
}
}

These grub config files are later dynamically overwritten for each boot by your application
server’s “Master Control Program” (MCP).

The example above assumes the DHCP also running on the central Master Control Pro-
gram (MCP) server. To use a DHCP server running on another host configure it with some
grub /tftp redirection chains to in the end lead to the same files /tftpboot/sarahconnor.lst
and /tftpboot/johnconnor.1lst loaded from the MCP server.

e Force DHCP server to reread its configuration
$ kill -HUP $pid_of_dhcpd

3.1.4 Configure TFTP on central MCP machine

The MCP server is also acting as a TFTP server, so it has to be configured as such:

17

3 Technical Infrastructure

e Install a TFTP server

sudo apt-get install inetutils-inetd
sudo apt-get install atftpd

sudo chmod 777 /var/lib/tftpboot/
sudo 1ln -s /var/lib/tftpboot /tftpboot

€hH P H P

e Create symlinks to point TFTP dir into Tapper working dir

The TFTP daemon only serves files from /tftpboot, as seen above in the DHCP config. To
supply files from the Tapper working dir make the /tftpboot a symlink to the Tapper working
dir.

$ In -s /data/tapper/live/configs/tftpboot /tftpboot

When Tapper creates tftp files it works with absolute path names. Because the TFTP daemon
interprets all absolute pathnames relative to its root dir we supply a tftpboot symlink inside
the tftp root (which is also our Tapper working dir), so we can use the same absolute path name
in both contexts (Tapper and TFTP):

$ In -s /data/tapper/live/configs/tftpboot \
/data/tapper/live/configs/tftpboot/tftpboot
3.1.5 Make the hosts known in the TestrunDB

$ tapper-testrun newhost --name=sarahconnor --active=1
$ tapper-testrun newhost --name=johnconnor --active=1

This makes the hosts generally available (active) for scheduling testruns by machine name. For schedul-
ing hosts by more detailed machine features (cpu, memory, family, etc.) you need to add according
key /value pairs in the HostFeature table.

3.1.6 Optionally: enable temare to generate tests for this host

Temare is an utility that generates preconditions according to a test matrix of host/guest virtualization
scenarios (but not yet shipped publicly).

For generating preconditions for a host, you can register the host in temare.

If you want tests scheduled for the new machine then follow these steps:

e Login as root on MCP server

e Set the PYTHONPATH to include the temare src directory
export PYTHONPATH=$PYTHONPATH:/opt/tapper/python/temare/src
e Add the host to temare hostlist

$ /opt/tapper/python/temare/temare hostadd $hostname \
$memory \
$cores \
$bitness

18

3.1.7 Optionally: Web server for autoinstall

If you want to use autoinstall (i.e. kickstart, autoyast in contrast to image based installation
with the Tapper installer) the suggested way to do it is Cobbler. If you do not want to use
Cobbler, Tapper also supports kickstart more directly using the autoinstall precondition type.
For this precondition you need a way to get the kickstart/autoyast to the test machine. The
suggested way is a Web server, e.g Apache. Adapt your Apache config with the following: cat
<<EOF >>/etc/apache2/conf.d/tapper.conf Alias /autoinstall /data/tapper/live/configs/au-
toinstall <Directory /data/tapper/live/configs/autoinstall> Options +FollowSymLinks +In-
dexes ForceType text/plain order allow,deny allow from all </Directory> EOF

e Add the Tapper ssh key to your image.
cat /home/tapper/.ssh/id_dsa.pub >> /root/.ssh/authorized_keys

(FIXME) Actually this does not belong into the host preparation but into a separate image
preparation chapter which does not yet exist.

4 Test Protocol

In order to write test suites you need to understand the output protocol, which is TAP, the Test
Anything Protocol.

The protocol is trivially to produce, you can do it with simple Shell echos or you can use TAP
emitting toolchains, like practically all Test: :* modules from the Perl world.

This chapter explains the protocol and the Tapper specific extensions, which are usually headers that
can be transported inside TAP comments.

4.1 Test Anything Protocol (TAP)
4.2 Tutorial
4.2.1 Just plan and success

Example:

1..3
ok

ok

not ok

Remarks:

e 3 single tests planned
e the two first went good

e the last went wrong

19

4 Test Protocol

4.2.2 Succession numbers
Example:

1..3
ok 1
ok 2
not ok 3

Remarks:
e Missing test lines (eg. due to internal bummers) can be detected.
Example with missing test:

1..3
ok 1
not ok 3

Remarks:

e Parsing will later say “ test 2 expected but got 3”

4.2.3 Test descriptions
Example:

1..3

ok 1 - input file opened
ok 2 - file content

not ok 3 - last line

Remarks:

e Readability.

4.2.4 Mark tests as TODO
Example:

1..3

ok 1 - input file opened
ok 2 - file content

not ok 3 - last line # TODO

Remarks:
e mark not yet working tests as "TODO"
e allows test-first development

e "ok" TODOs are recognized later

("unexpectedly succeeded")
=item * We also use it to ignore known issues with still being able to find

them later.

20

4.2 Tutorial

4.2.5 Comment TODO tests with reason
Example:

1..3

ok 1 - input file opened

ok 2 - file content
not ok 3 - last line # TODO just specced

Remarks:

e cominent the TODO reason

4.2.6 Mark tests as SKIP (with reason)
Example:

1..3

ok 1 - input file opened

ok 2 - file content
ok 3 - last line # SKIP missing prerequisites

Remarks:

e mark tests when not really run (note it’s set to “ok” anyway)

e keeps succession numbers in sync

4.2.7 Diagnostics

Example:

1..3

ok 1 - input file opened

ok 2 - file content

not ok 3 - last line # TODO just specced
Failed test ’last line’

at t/data_dpath.t line 410.

got: ’foo’

expected: ’bar’

Remarks:

e Unstructured details

21

4 Test Protocol

4.2.8 YAML Diagnostics

Example:

1..3
ok 1 - input file opened
ok 2 - file content
not ok 3 - last line # TODO just specced
message: Failed test ’last line’ at t/data_dpath.t line 410.
severity: fail
data:
got: ’foo’
expect: ’bar’

Remarks:

Structured details

allows parsable diagnostics

we use that to track values inside TAP

have a leading test line with number+description

track complete data structures according to it

— e.g., benchmark results

4.2.9 Meta information headers for reports

TAP allows comment lines, starting with #. We allow meta information transported inside those
comment lines when declared with Tapper specific headers.
Example:

1..3

Tapper-Suite-Name: Foo-Bar

Tapper-Suite-Version: 2.010013

ok 1 - input file opened

ok 2 - file content

not ok 3 - last line # TODO just specced

Remarks:

e we use diagnostics lines (“hot comments”)

e semantics only to our TAP applications

These are the headers that apply to the whole report:

22

4.2 Tutorial

Tapper-suite-name: -- suite name

Tapper-suite-version: -- suite version

Tapper-machine-name: -- machine/host name

Tapper-machine-description: -- more details to machine

Tapper-reportername: -- user name of the reporter

Tapper-starttime-test-program: -- start time for complete test
(including guests)

Tapper-endtime-test-program: -- end time for complete test
(including guests)

Tapper-reportgroup-testrun: -- associate this report with other
reports of same testrun_id

Tapper-reportgroup-arbitrary: -- associate this report with other

reports of same arbitrary id

(can be any string, but should be
unique between all groups of the db,
eg., an md5-hash of common
characteristics of all test of one
group)

There are more headers that apply to single sections of a report.

4.2.10 Report sections

Standard TAP contains of exactly one block with one plan (eg., 1..5) and some TAP lines. In Tapper
you can concatenate several such blocks at once. They are interpreted like different files, and are
named sections in Tapper jargon.

The delimiter between such sections is the plan line. This requires the plan to come first for each sec-
tion. See chapters “Explicit section markers with lazy plans” and “TAP archives” below for explicitely
providing other TAP section delimiters.

Please remember: Concatenating several sections into one big block of TAP is a Tapper
extension. To interact with other TAP toolchains you should try to use “TAP archives”
when submitting sections into Tapper.

Example:

1..2

Tapper-section: arithmetics
ok 1 add

ok 2 multiply

1..1

Tapper-section: string handling
ok 1 concat

1..3

Tapper-section: benchmarks
ok 1

ok 2

ok 3

Remarks:

23

4 Test Protocol

e we recognize “sections”, each with its own plan

e allows structuring of results,

e better readability later in web interface

4.2.11 Meta information headers for report sections

These are the headers that apply to single sections:

Tapper-explicit-section-start:

Tapper-ram:
Tapper-cpuinfo:
Tapper-uname:
Tapper-osname:
Tapper-bios:
Tapper-flags:
Tapper-changeset:

H OH O H O H R

Tapper-description:

Tapper-uptime:
Tapper-language-description:

=+

Tapper-reportcomment:

Tapper-xen-version:
Tapper-xen-changeset:
Tapper-xen-domO-kernel:

Tapper-xen-guest-description:
Tapper-xen-guest-test:
Tapper-xen-guest-start:
Tapper-xen-guest-flags:

H OH OHF B H O B

Tapper-kvm-module-version:
Tapper-kvm-userspace-version:
Tapper-kvm-kernel:

Tapper-kvm-guest-description:
Tapper-kvm-guest-test:
Tapper-kvm-guest-start:
Tapper-kvm-guest-flags:

H OoH #F B H HF B H

Tapper-simnow-version:
Tapper-simnow-svn-version:
Tapper-simnow-svn-repository:

H OH = =

24

Tapper-xen-base-os-description:

Tapper-kvm-base-os-description:

-- explicitely start a section now

instead of autorecognition
memory
what CPU
kernel information
0S information
BIOS information
flags, usually linux kernel
exact changeset of the currently

tested software or kernel
more description of the currently

tested software or kernel,

e.g., if changeset is not enough
uptime, maybe the test run time
for Software tests,

like "Perl 5.10", "Python 2.5"
Freestyle comment

Xen version

particular Xen changeset

the kernel version of the domO
more verbose 0S information
description of a guest

the started test program

start time of test

flags used for starting the guest

version of KVM kernel module
version of KVM userland tools
version of kernel

more verbose 0S information
description of a guest

the started test program

start time of test

flags used for starting the guest

version of simnow
svn commit id of simnow
used svn repository

Tapper-simnow-device-interface-version: -- internal simnow device

4.2 Tutorial

interface version
Tapper-simnow-bsd-file: -- used BSD file (machine model)
Tapper-simnow-image-file: -- used 0S image botted in simnow
(usually similar to
Tapper-osname or
Tapper-xen-base-os-description or
Tapper-kvm-base-os-description)

4.2.12 Meta information structure summary

There are groups of reports (e.g. for virtualization scenarios), optionally identified by a testrun ID
or by an arbitrary ID. Every report has an ID and a set of meta information. A report consists of
sections, which can each have section specific set of meta information.

The resulting meta information hierarchy looks like this.

e Reportgroup

- testrun reportgroup ID
- arbitrary reportgroup ID

— Report

- report ID

- Tapper-suite-name

- Tapper-suite-version

- Tapper-machine-name

- Tapper-machine-description

- Tapper-reportername

- Tapper-starttime-test-program
- Tapper-endtime-test-program

- Tapper-reportgroup-testrun

- Tapper-reportgroup-arbitrary

x Section

- Tapper-explicit-section-start
- Tapper-ram

- Tapper-cpuinfo

- Tapper-uname

- Tapper-osname

- Tapper-bios

- Tapper-flags

- Tapper-changeset

- Tapper-description

- Tapper-uptime

- Tapper-language-description

- Tapper-reportcomment

- Tapper-xen-version

- Tapper-xen-changeset

- Tapper-xen-domO-kernel

- Tapper-xen-base-os-description

25

4 Test Protocol

- Tapper-xen-guest-description

- Tapper-xen-guest-test

- Tapper-xen-guest-start

- Tapper-xen-guest-flags

- Tapper-kvm-module-version

- Tapper-kvm-userspace-version

- Tapper-kvm-kernel

- Tapper-kvm-base-os-description
- Tapper-kvm-guest-description

- Tapper-kvm-guest-test

- Tapper-kvm-guest-start

- Tapper-kvm-guest-flags

- Tapper-simnow-version

- Tapper-simnow-svn-version

- Tapper-simnow-svn-repository

- Tapper-simnow-device-interface-version
- Tapper-simnow-bsd-file

- Tapper-simnow-image-file

4.2.13 Explicit section markers with lazy plans

In TAP it is allowed to print the plan (1..n) after the test lines (a “lazy plan”). In our Tapper
environment with concatenated sections this would break the default section splitting which uses the
plan to recognize a section start.

If you want to use such a “lazy plan” in your report you can print an Tapper header
Tapper-explicit-section-start to explictely start a section. Everything until the next header
Tapper-explicit-section-start is building one section. This also means that if you used this
header once in a report you need to use it for all sections in this report.

The Tapper-explicit-section-start typically ignores its value but it is designed anyway to allow
any garbage after the value that can help you visually structure your reports because explicit sections
with “lazy plans” make a report hard to read.

Example:

Tapper-explicit-section-start: 1 ------ arithmetics -------

Tapper-section: arithmetics

ok 1 add

ok 2 multiply

1..2

Tapper-explicit-section-start: 1 ------ string handling -------
Tapper-section: string handling

ok 1 concat

1..1

Tapper-explicit-section-start: 1 ------ benchmarks -------
Tapper-section: benchmarks

ok 1

ok 2

ok 3

1..3

26

4.2 Tutorial

Please note again: The sectioning in general and this auxiliary header for marking sections
is a Tapper extension, not standard TAP. An alternative way better than fiddling with
this sectioning is to produce TAP archives and submit them instead. See chapter “TAP
Archives”.

4.2.14 Developing with TAP

TAP consuming is provided via the Test::Harness aka. TAP: :Parser Perl toolchain. The frontend
utility to execute TAP emitting tests and evaluate statistics is prove.

$ prove t/*x.t

t/00-1load......... ok

t/boilerplate..... ok

t/pod-coverage....ok

A1l tests successful.

Files=4, Tests=6, 0 wallclock secs

(0.05 usr 0.00 sys + 0.28 cusr 0.05 csys = 0.38 CPU)
Result: PASS

Remarks:

e TAP::Parser
— prove tool
— overall success and statistics

allows formatters

used to produce web reports

It helps to not rely on Tapper extensions (like report sections) when using the prove command.

4.2.15 TAP tips

e TAP is easy to produce but using it usefully can be a challenge.

e Use invariable test descriptions.

Put meta information in diagnostics lines, not into test descriptions.

Use the description after # TODO/SKIP.

Cheat visible (or: don’t cheat invisible).

Really use # TODO/SKIP.

These tips keep later TAP evaluation consistent.

27

4 Test Protocol

4.3 Particular use-cases
4.3.1 Report Groups

Report grouping by same testrun If we have a Xen environment then there are many guests each
running some test suites but they don’t know of each other.

The only thing that combines them is a common testrun-id. If each suite just reports this testrun-id
as the group id, then the receiving side can combine all those autonomously reporting suites back
together by that id.

So simply each suite should output

Tapper-reportgroup-testrun: 1234

with 1234 being a testrun ID that is available via the environment variable $TAPPER_TESTRUN. This
variable is provided by the automation layer.

Report grouping by arbitrary idenitifier If the grouping id is not a testrun id, e.g., because you
have set up a Xen environment without the Tapper automation layer, then generate one random value
once in dom0 by yourself and use that same value inside all guests with the following header:

e get the value:
TAPPER_REPORT_GROUP=‘date |md5sum|awk ’{print $1}’°¢
e use the value:
Tapper-reportgroup-arbitrary: $TAPPER_REPORT_GROUP

How that value gets from dom0 into the guests is left as an exercise, e.g. via preparing the init scripts
in the guest images before starting them. That’s not the problem of the test suite wrappers, they
should only evaluate the environment variable TAPPER_REPORT_GROUP.

4.4 TAP Archives

Some TAP emitting toolchains allow the generation of .tar.gz files containing TAP, so called TAP
archives. E.g., via prove:

$ prove -a /tmp/myresults.tgz t/

You can later submit such TAP archive files to the Tapper reports receiver tha same way as you
report raw TAP.

4.5 Reporting TAP to the reports receiver

The Tapper reports receiver is a daemon that listens on a port and slurps in everything between the
open and close of a connection to it. Therefore you can use netcat to report TAP.

Remember that using netcat in turn can be a mess, the are several flavours with different options
which are also changing their behaviour over time. So to be sure, you better do your own socket
communication with Perl or Python: open socket, print to socket, close socket, done. We just keep
with netcat for illustrating the examples.

28

4.5.1 Submitting raw TAP

Simply submit all TAP directly into the socket of the reports receiver:
$./my_tap_emitting_test_suite | netcat tapper_server 7357

4.5.2 Submitting TAP Archives

You submit the content of a .tar.gz file in the same way you submit raw TAP, via the same API. The
receiver recognizes the .tar.gz contenttype by itself.

$ prove -a /tmp/myresults.tgz t/
$ cat /tmp/myresults.tgz | netcat tapper_server 7357

5 Test Suite Wrappers

This section is about the test suites and wrappers around existing suites. These wrappers are part of
our overall test infrastructure.
It’s basically about the middle part in the following picture:

g

‘.(

ax
253
tge
2

2B =
253
S8 %
H

1 N d N

- deploy - Test Protocol (TAP} - DB-Layer
- install - Utilities
- start - Report |istener

\ % N %

We have wrappers for existing test and benchmark suites.

Wrappers just run the suites as a user would manually run them but additionally extract results and
produce TAP (Test Anything Protocol).

We have some specialized, small test suites that complement the general suites, e.g. for extracting
meta information or parsing logs for common problems.

If the environment variables

TAPPER_REPORT_SERVER
TAPPER_REPORT_PORT

are set the wrappers report their results by piping their TAP output there, else they print to STDOUT.

5.1 Available test suite wrappers

Originally we have a lot of direct wrappers available but haven’t them all published as open source.
For OS testing the most important wrapper which is also publicly available is tapper-testsuite-autotest
aka. Tapper-Testsuite-AutoTest. You should look at that.

29

6 Preconditions

5.1.1 tapper-testsuite-autotest

A suite that wraps the autotest client with the export of TAP and sends the resulting TAP archives
to Tapper server.

That is the primary testsuite wrapper for OS testing.

5.2 Environment variables

The TAPPER automation layer provides some environment variables that the wrappers can use:

e TAPPER TESTRUN Currently active Testrun ID.
e TAPPER SERVER The controlling automation Server that initiated this testrun.

e TAPPER REPORT_ SERVER The target server to which the tests should report their results
in TAP.

e TAPPER REPORT PORT The target port to which the tests should report their results in
TAP. Complements TAPPER_REPORT_SERVER.

e TAPPER REPORT _ API PORT The port on which the more sophisticated Remote Reports
API is available. It’s running on the same host as TAPPER_REPORT_SERVER.

e TAPPER TS RUNTIME Maximum runtime after which the testprogram will not be restarted
when it runs in a loop. (This is a more passive variant than a timeout.)

e TAPPER GUEST NUMBER Virtualisation guests are ordered, this is the guest number or 0
if not a guest.

e TAPPER NTP SERVER The server where to request NTP dates from.

These variables should be used in the TAP of the suite as @tapper headers. Important use-case is
"report groups", see next chapter.

6 Preconditions

The central thing that is needed before a test is run is a so called precondition. Creating those
preconditions is the main task needed to do when using the automation framework.

Most of the preconditions describe packages that need to be installed. Other preconditions describe
how subdirs should be copied or scripts be executed.

A precondition can depend on other preconditions, leading to a tree of preconditions that will be
installed from the leaves to the top.

30

6.1 SYNOPSIS

6.1 SYNOPSIS

6.2 Layers of preconditions

6.3 Precondition repository

6.4 Overview Precondition Types
6.5 Details Precondition Types
6.6 Macro Preconditions

6.7 Testplans

6.8 Precondition Producers

e Create a (maybe temporary) file

e Define conditions for a testrun: the preconditions

Put the precondition into the database, maybe referring to other preconditions

Create a testrun in the database, referring to the precondition

Wait until the testrun is executed and results are reported

6.9 Layers of preconditions

There are “normal preconditions” and “macro preconditions”.

6.9.1 Normal preconditions

We store preconditions in the database and assign testruns to them (also in the database).

Usually the preconditions were developed in a (temporary) file and then entered into the database
with a tool. After that the temporary file can be deleted. Note that such a precondition file can
contain multiple precondition as long as they are formated as valid YAML.

Preconditions can be kept in files to re-use them when creating testruns but that’s not needed for
archiving purposes, only for creation purposes.

Please note: Normal preconditions are usually not what you want. It’s the low level mechanism.
Its advantage is in reusing the preconditions by referring to IDs and creating trees of preconditions.
This reuse is usually too complex. What you typically want are Macro Preconditions.

6.9.2 Macro preconditions

There is another mechanism on top of normal preconditions: Macro Preconditions. These allow to
bundle multiple preconditions at once into a common use-case.

A macro precondition is evaluated when the testrun is added via the cmdline utils (or the web app,
both use the same underlying layer). The result are “normal preconditions” which are inserted into
the DB everytime together with the testrun, so there is no reuse of preconditions and preconditions
are always a list, no tree. Anyhow, they are much easier to handle.

Macro preconditions are template files which should be archived in the precondition repository, as
only the finally resulting preconditions are stored in the database.

31

6 Preconditions

6.9.3 Testplans

Testplans are a variant of macro preconditions to control multiple testruns and queue them to par-
ticular hosts and queues. They are mostly useful to provide end-users with complex but polished
frontend use-cases where they can define values to prepared parameters.

6.10 Precondition repository

Macro preconditions can be stored in

/data/tapper/live/repository/macropreconditions/

6.11 Overview Precondition Types

There are two variants of preconditions: Action preconditions and Highlevel preconditions. Action
preconditions describe single actions, like “copy a file” or “execute a program”. Highlevel preconditions
can contain other (action) preconditions and are used for instance for virtualization install scenarios
where hosts and guests are described.

Please note the wording: A precondition is the particular YAML block with all the details (think
of an object instance). Such a block is of a “precondition type” which defines its allowed structure
(think of a class).

6.11.1 Overview: Action precondition types
The following action precondition types are allowed:
e package
A package (kernel, library, etc.), of type .tar, .tar.gz or .tar.bz2
e image
A complete OS image of type .iso, .tar.gz, .tgz, .tar, .tar.bz2
e prc
Create a config for the PRC module of the automation layer.

e copyfile
One file that can just be copied/rsync’d

e installer stop

Don’t reboot machine after system installer finished

e grub

Overwrite automatically generated grub config with one provided by the tester

o fstab
Append a line to /etc/fstab

e repository

Fetch data from a git, hg or svn repository

32

6.12 Details Precondition Types

® exec

Execute a script during installation phase

e reboot

Requests a reboot test and states how often to reboot.

e cobbler

Use Cobbler to install the test system.

6.11.2 Overview: Highlevel precondition types
Currently only the following high level precondition type is allowed:

e virt

Generic description for Xen or KVM

High level preconditions both define stuff and can also contain other preconditions.

They are handled with some effort to Do The Right Thing, i.e., a defined root image in the high level
precondition is always installed first. All other preconditions are installed in the order defined by its
tree structure (depth-first).

6.12 Details Precondition Types

We describe preconditions in YAML files (http://www.yaml.org/).
All preconditions have at least a key

precondition_type: TYPE
and optionally

name: VERBOSE DESCRIPTION
shortname: SHORT DESCRIPTION

then the remaining keys depend on the TYPE.

6.12.1 installer stop

stop run after system installer

precondition_type: installer_stop

6.12.2 grub
overwrite automatically generated grub config

precondition_type: grub
config: |
title Linux
root $grubroot
kernel /boot/vmlinuz root=$root"

33

6 Preconditions

e Note: multiple lines in the grub file have to be given as one line separated by “\n” (literally a
backslash and the letter n) in YAML

e the variables $grubroot and $root are substituted with grub and /dev/* notation of the root
partition respectively

e $root substitution uses the notation of the installer kernel. This may cause issues when the
installer detects /dev/sd? and the kernel under test detects /dev/hd? or vice versa

e since grub always expects parentheses around the device, they are part of the substitution string
for $grubroot

e note the syntax, to get multiline strings in YAML you need to start them with |, a newline and
some indentation

6.12.3 package

precondition_type: package
filename: /data/tapper/live/repository/packages/linux/linux-2.6.27.7.tar.bz2

e path names can be absolut or relative to /data/tapper/development /repository/packages/

supported packages types are rpm, deb, tar, tar.gz and tar.bz2

package type is detected automatically

absolute path: usually /data/tapper/...

relative path: relative to /data/tapper/(live|development)/

6.12.4 copyfile

a file that just needs to be scp or copied:

precondition_type: copyfile

protocol: nfs

source: osko:/export/image_files/official_testing/README
dest: /usr/local/share/tapper/

7w

e supported protocols are “scp”, “nfs” and “local”

e the part before the first colon in the unique name is used as server name

e the server name part is ignored for local

e if dest ends in a slash, the file is copied with its basename preserved into the denoted directory

e whether the “dest” is interpreted as a directory or a file is decided by the underlying “scp” or
“cp” semantics, i.e., it depends on whether a directory already exists.

34

6.12 Details Precondition Types

6.12.5 fstab

a line to add to /etc/fstab, e.g., to enable mounts once the system boots

precondition_type: fstab
line: "165.204.85.14:/vol/osrc_vol0 /home nfs auto,defaults 0 O"

6.12.6 image

usually the root image that is unpacked to a partition (this is in contrast to a guest file that’s just
there)

precondition_type: image

mount: /

partition: testing

image: /data/tapper/live/repository/images/rhel-5.2-rc2-32bit.tgz

e partition and mount are required, all other options are optional
e mount points are interpreted as seen inside the future installed system

e if no image is given, the already installed one is reused, i.e., only the mountpoint is mounted;
make sure this is possible or your test will fail!

e can be either an iso file which is copied with dd or a tar, tar.gz or tar.bz2 package which is
unpacked into the partition

e partitions are formated ext3 (only when image is given) and mounted to mount afterwards

(this is why image exists at all, copyfile does not provide this)

e “image”: absolute or relative path (relative to /data/tapper/live/repository/images/)

If not given, then it re-uses the partition without formatting/unpacking it.

e partition: Can be /dev/XXX or LABEL or UUID.

6.12.7 repository
precondition_type: repository
type: git
url: git://git.kernel.org/pub/scm/linux/kernel/git/avi/kvm.git
target: kvm
revision: c192ale274b71daeca4e6dd327d8a33e8539ed937

e git and hg are supported
e type and url are mandatory, target and revision are optional

e target denotes the directory where the source is placed in, the leading slash can be left out (i.e.,
paths can be given relative to root directory /).

35

6 Preconditions

6.12.8 type: prc

Is typically contained implicitely with the abstract precondition wirt. But can also be defined ex-
plicitely, e.g., for kernel tests.
Creates config for PRC. This config controls what is to be run and started when the machine boots.

precondition_type: prc

config:
runtime: 30
test_program: /bin/uname_tap.sh
timeout_after_testprogram: 90

guests:
- svm: /xen/images/..../foo.svm
- svm: /xen/images/..../bar.svm
- exec: /xen/images/..../start_a_kvm_guest.sh

e guest number

If it is a guest, for host system use 0.

e test program

startet after boot by the PRC

e runtime
The wanted time, how long it runs, in seconds, this value will be used to set an environment
variable TAPPER_TS_RUNTIME, which is used by the test suite wrappers.

e timeout testprogram

Time that the testprogram is given to run, at most, after that it is killed (SIGINT, SIGKILL).

e guests

Only used for virtualization tests. Contains an array, one entry per guest which defines how a
guest is started. Can be a SVM file for Xen or an executable for KVM.

6.12.9 type: exec

Defines which program to run at the installation phase.

precondition_type: exec
filename: /bin/some_script.sh
options:
- =V
- --foo
- --bar="hot stuff"
the following lesson:

36

6.12 Details Precondition Types

6.12.10 type: hint

Such a precondition provides hints where normal behaviour needs to be changed. It contains any hash
keys needed for the special handling. The special handling itself is done in the MCP and needs to be
prepared for what you specify here.

We currently use it to handle SimNow testing.

precondition_type: hint
simnow: 1
script: familyl0_sleslO_xen.simnow

6.12.11 quote subtleties

Please note some subtlety about quotes.

e This is YAML. And YAML provides its own way of quoting.
So this

precondition_type: exec
filename: /bin/some_script.sh
options:

- --foo

and this

precondition_type: exec
filename: /bin/some_script.sh
optiomns:

- "__foo"

are actually the same (the value is always: --foo) because quotes at the beginning and end of
a YAML line are used by YAML. When you use quotes at other places like in

precondition_type: exec
filename: /bin/some_script.sh
optiomns:

- --bar="hot stuff"

then they are not part of the YAML line but part of the value, so this time the value is:
--bar="hot stuff".
e Quotes are not shell quotes.

So if you used quotes and they are not YAML quotes but part of the value then you should
know that they are not evaluated by a shell when some_script.sh is called, because we use
system() without a shell layer to start it.

That’s why in above example the quoted value "hot stuff" (with quotes!) is given as parameter
--bar to the program. This usually not what you want.

37

6 Preconditions

e Summary: Yo nearly never need quotes.

This is good enough:

precondition_type: exec
filename: /bin/some_script.sh
options:

- -V

- --foo

- --bar=hot stuff

6.12.12 type: reboot

Requests a reboot test and states how often to reboot.
Note: Reboot count of 1 actually means boot two times since the first boot is always counted as
number 0.

precondition_type: reboot
count: 2

6.12.13 type: autoinstall

Install a system using autoinstall scripts. The filename denotes the grub config to be used. It is
mandatory and can be given as absolut path or relative to /data/tapper/.../repository/install grub/.
The optional timeout is measured in second. If its absent a default value is used.

precondition_type: autoinstall
filename: suse/SLES10SP3_x86_64.1st
timeout: 1800

6.12.14 type: testprogram

Define which test program to run. This way of defining a test program should be prefered to using
the PRC type precondition. Only the testprogram precondition guarantees parsing that sets all
internal Tapper variables correctly.

Testprograms allow a key chdir which can either contain a particular directory where to chdir before
testprogram execution or the value AUTO (uppercase) which means to chdir to the dirname of the
program.

precondition_type: testprogram
runtime: 30

program: /bin/uname_tap.sh
timeout: 90

parameters:

- --verbose

38

6.12 Details Precondition Types

6.12.15 type: autoinstall

Install a system using autoinstall scripts. The filename denotes the grub config to be used. It is
mandatory and can be given as absolut path or relative to /data/tapper/.../repository /install grub/.
The optional timeout is measured in second. If its absent a default value is used.

precondition_type: autoinstall
filename: suse/SLES10SP3_x86_64.1st
timeout: 1800

6.12.16 type: cobbler

Install a system using Cobbler. The profile denotes a profile exactly as known by Cobbler. The timeout
allows you to limit the time used for installation.

precondition_type: cobbler
profile: ubuntu-12.04-64
timeout: 1800

6.12.17 type: virt

A virtualization environment.
(The linebreaks with \ are not part of the actual file, but only for this document.)

precondition_type: virt
name: automatically generated Xen test
host:
preconditions:
- precondition_type: package
filename: /data/tapper/live/repository/packages/xen/builds/\
x86_64/xen-3.3-testing/\
xen-3.3-testing.2009-03-20.18614_£54cf790ffc7.x86_64.tgz
- precondition_type: package
filename: /data/tapper/live/repository/packages/tapperutils/\
sles10/xen_installer_suse.tar.gz
- precondition_type: exec
filename: /bin/xen_installer_suse.pl
root:
precondition_type: image
partition: testing
image: suse/suse_slesl10_64b_smp_raw.tar.gz
mount: /
arch: linux64
testprogram:
execname: /opt/tapper/bin/tapper_testsuite_domO_meta.sh
timeout_testprogram: 10800
guests:
- config:
precondition_type: copyfile

39

6 Preconditions

protocol: nfs
name: tapper:/data/tapper/live/repository/configs/\
xen/001-sandschaki-1237993266.svm
dest: /xen/images/
svm: /xen/images/001-sandschaki-1237993266.svm
root:
precondition_type: copyfile
protocol: nfs
arch: linux64
name: osko:/export/image_files/official_testing/\
redhat_rhel4u7_64b_up_qcow.img
dest: /xen/images/
mountfile: /xen/images/001-sandschaki-1237993266.img
mounttype: raw
testprogram:
execname: /opt/tapper/bin/py_ltp
timeout_after_testprogram: 10800

e guest root always needs to name the file to mount since its not easy or even impossible to get
this name for some ways to install the root image (like tar.gz packages or subdir)

e guest root and guest config are installed inside the host, guest preconditions are installed inside
the guest image

e guests can be started with xm create $xenconf, evaluation of $kvmconf or executing the $exec-
conf script, thus only one of these three must be provided

e ""Note”’: virt instead of virtualisation is used to reduce confusion for users whether British
English (virtualisation) or American English (virtualization) is expected

e key “arch” arch: linux64 | linux32 (needed for for tapper toolchain)

6.12.18 General precondition keys “mountfile”

These 2 options are possible in each precondition. With that you can execute the precondition inside
guest images:

mountfile:
mountpartition:
mounttype: OTODO{is this the same as mountfile, mountpartition?}

1. only mountfile: eg. rawimage, file loop-mounted
2. only mountpartition: then mount that partition

3. image file with