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Abstract—Significant research has been done on 

training Artificial Neural Networks (ANN) with Particle 
Swarm Optimization (PSO) rather than the standard 
technique of back-propagation [of errors], yet little work 
has been done to combine the training method with an 
optimal network topology and transfer function.  This 
paper will discuss the use of PSO to select optimal inputs, 
topologies, and transfer functions for ANN.  Brief 
descriptions of ANN, as well as the PSO algorithm itself, 
will be followed by a concrete application of the proposed 
marriage of the two.  As an example, the Reactive Power 
Control problem will be solved with the methods 
presented and the results shown graphically. 
 

Index Terms—Particle Swarm Optimization, Neural Network 
 

I. INTRODUCTION 

 
ARTICLE Swarm Optimization (PSO) has been an 
increasingly hot topic in the area of computational 

intelligence.  PSO is yet another optimization algorithm that 
falls under the soft computing umbrella that covers genetic 
and evolutionary computing algorithms as well.  As such, it 
lends itself as being applicable to a wide variety of 
optimization problems.  One application that PSO has had 
tremendous success is in the training of Artificial Neural 
Networks (ANN), a fellow soft computing technique. 
 
Typically, ANN applications of PSO have only been used to 
find optimal weights for a given network.  Networks not only 
need appropriate weights, but also the appropriate topology 
and neuron transfer functions.  The PSO algorithm does not 
differentiate between the variables it optimizes, meaning that 
it is not only capable of optimizing network weights, but also 
any network parameters that are allowed to be variables.  This 
means that PSO can be used to optimize all parameters of a 
network: the number of layers, input neurons, hidden neurons, 
the type of transfer functions etc.  This paper will focus on 
optimizing the weights, transfer function, and topology of an 
ANN constructed for reactive power control. 
 
A system under optimal power conditions operates with a high 

 
 

power factor.  The power factor of a system is composed of 
two elements, active power and apparent power.  Active 
power is the useful power.  Apparent power is the aggregate 
of active power and reactive power.  The power factor ratio is 
given in (1). 
 

 
         (1) 

 
 
This ratio is also equal to the cosine of the angle between the 
voltage and the current of the system.  This equality may be 
seen in (2). 
 

           (2) 
 
 

As previously mentioned, the higher the power factor, the 
more the apparent power is being used, whereas a low power 
factor adds strain on the system.  It is desirable to keep the 
power factor of a system higher rather than lower.  Low 
power factors result in equipment failure and higher 
transmission costs[1].  To do this, correction measures must 
be implemented. 
 
It is more common than not for a system to have a lagging 
power factor.  Fortunately this problem is easily remedied by 
injecting the appropriate amount of reactive power into the 
system’s grid.  Without integrating these corrective measures, 
the supplier of the power would be required to manage the 
extra reactive power demand leading to increased cost for the 
customer[2]. 
 
Implementation of client-side reactive power control requires 
a more robust and pseudo-intelligent control system.  The 
control system is now responsible for controlling the reactive 
power generators to inject the appropriate amount of reactive 
power at the right time.  Power systems are complex, and load 
demands are constantly changing.  There are a vast amount of 
variables involved in a power system and there is no hard-
computing method to determine how much reactive power 
should be added to a system for a given time.  The soft-
computing world offers a variety of methods shown to work 
remarkably well for the reactive power control problem.  
These methods consist of neuro-fuzzy systems, ANN, and 
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many combinations of the two such as Adaptive Neuro-Fuzzy 
Inference Systems[2]. 
 
 
ANN have been shown to be powerful and robust solutions 
for the control of reactive power.  However, no one network is 
appropriate for all systems.  Instead, custom networks are built 
and trained for each separate system.  These networks differ in 
their weights, neuron transfer functions, topology, and other 
network parameters.  Thus it is appropriate to be able to 
construct a robust network fairly quickly and with ease when 
given a list of possible network inputs variables.  This paper 
proposes a method of building an optimal ANN when given 
sufficient data characterizing the power system dynamics.   
The data used to build and train an ANN with the proposed 
method was taken from an automobile industry and represents 
the voltage, current, and reactive power patterns taken every 
10 minutes over a 24 hour period.  This data was graciously 
made available for study by Dr. Ajith Abraham, who used it in 
a similar paper, “Neuro-Fuzzy Paradigms for Intelligent 
Energy Management”[1]. 
 
Brief introductions to ANN and PSO are given before the 
proposed method of network construction and training so that 
when proposed, the reader will have a basic understanding of 
how the method works. 
 
 

II. ARTIFICIAL NEURAL NETWORKS 
 

A. Composition 
 
Artificial Neural Networks, heron referred to as ANN, are an 
attempt at modeling the processing power of the human brain.  
Humans are able to adapt to new situations and learn quickly 
when given the correct context.  Computers are relatively slow 
at performing simple human tasks such as recognizing a lizard 
in a painting of the jungle.  ANN work by simulating the 
structure of the human brain.  At their basic level they consist 
of a network of neurons connected by synapses. 
 
Neurons are the basic element of an ANN.  Neurons accept 
inputs from other connections and produce an output by firing 
their synapse.  Neurons typically perform a weighted sum on 
all of their input connections and then pass it through a 
transfer function to produce its output.  A simple block 
diagram showing the process of a neuron applying the transfer 
function to its inputs before emitting its output may be seen in 
Fig 1.  The traditional ANN is a binary network in which a 
synapse either fires or doesn’t fire.  This type of transfer 
function is a step function in which the neuron compares its 
weighted sum to a threshold and then either emits a 1 or a 0 
(fires or doesn’t fire its synapse).  While binary networks have 
their uses, most engineering applications involve the real 
number system.  ANN have thus been adapted to use real 

numbers.  The principles are the same, but rather than only 
outputting a 1 or 0, a neuron can output a real number on any 
range, typically [0, 1]. 
 
 

 
Figure 1.  Neuron block diagram 

 
ANN are organized into layers.  There is always an input 
layer, and always an output layer.  There may be any number 
of hidden layers, with the stipulation that there is at least one.  
The hidden layers are the root of the network.  They perform 
the actual calculations of the network.  A three layer feed-
forward network, also called the perceptron or the universal 
approximator, is shown in Fig 2.   
 
 

 
Figure 2.  Three-layer neural network 

 
A network is considered operational when it is given a set of 
input values and the output layer produces the expected result.  
The result is calculated by the topology of the neurons.  Each 
neuron connection may be weighted differently.  Each neuron 
may have a different transfer function (though usually they are 
the same).  A valid network is one that has arranged itself in 
such a manner that produces the correct output.  To facilitate 
the proper arrangement of a network, one must train the 
network. 
 
 

B. Training Neural Networks 
 
There are several methods of training ANN.  Back-
propagation is by far the most common.  This method is where 
the network back-propagates its errors when training.  An 
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ANN trains on a set of data which consists of inputs and an 
expected output.  The training process is as follows: 

1. Read in the inputs and expected outputs 
2. Calculate network result by performing weighted sums 

and transfer functions 
3. Compare network result with expected result 
4. Compute and update fitness value based on 

comparison. 
5. Repeat 2-3 until all training points are finished 
6. Adjust weights in the appropriate direction to 

maximize fitness. 
7. Repeat 1-6 until acceptable fitness value is found 

 
The Back-propagation method is simply a gradient type 
adjustment for weight modification.  While intuitive and 
effective it also may take an extremely long time to train a 
network.  This paper suggests the use of PSO as the training 
algorithm. 
 
 

C. Topologies 
 
The topology of a network defines the way the neurons are 
connected to each other.  There is a myriad of ways a network 
can be arranged, but various arrangements fall into two 
distinct categories, namely recurrent and feed-forward. 
 
Recurrent networks are networks in which internal 
connections form loops.  That is, when the output of one 
neuron also somehow effects its own input.  In computer 
science terms, a recurrent network occurs when the 
dependency graph contains one or more cycles.  Fig. 3 shows 
a directed graph representing the neurons of a recurrent 
network.  Recurrent networks inherently contain feedback.  
Like any system, this feedback can grow and cause problems 
if it is unbounded.  This feedback causes instabilities in the 
network, and is hard to control when using non standard 
training methods. 
 

 
Figure 3.  Network with feedback 

 
Feed-forward networks on the other hand are very stable.  
They do not contain the instabilities that recurrent networks 
due because they are required to have acyclic dependency 

graphs as shown in Fig. 4.  The researched discussed here 
only evolves the feed-forward network topologies in order to 
avoid the instabilities associated with feedback. 
 

 
Figure 4.  Network without feedback 

 

D. Transfer Functions 
 
Each neuron is associated with a transfer function which 
operates on its total input.  The total input of a neuron is 
defined as weighted sum of its input connections less some 
bias.  Binary ANN either output a 0 or a 1, so their transfer 
functions are limited to threshold and step-like transfer 
functions.  Real number ANN are allowed to output any real 
number value.  Transfer functions are typically picked to map 
their inputs onto a real number range that matches the 
expected output of the network.  For instance, if valid answers 
for a network lay on the range [0,10] and if there are 10 
hidden neurons, then those neurons would each have transfer 
functions that map to [0,1].  The alternative is to have the 
transfer function of the output neuron map the range of its 
inputs into the valid range of outputs.  In standard practice, it 
is good to do both of these.  Theoretically one is still left with 
an infinite amount of solutions, by choosing the range of the 
transfer functions it cuts down on the number of invalid 
solutions that a network may attempt during training. 
 
Another danger that needs to be addressed by the transfer 
function is giving one input more say than another simply by 
its value rather than its weight.  If one input is valid on the 
domain [0, 50] and another on [0, 2] and the output is on the 
range [0, 50] then the first input will dominate the second if it 
is not properly handled.  One might assume that connection 
weights account for the scaling.  This is true in part, but is 
dependent on the range used for connection weights.  The 
more appropriate way to deal with this situation is to use a 
transfer function which scales all inputs onto an equal range.  
This ensures that large inputs do not dominate smaller ones 
since each can contain equal information just on different 
scales.  A good transfer function for this type of scaling is the 
sigmoid function. 
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The sigmoid function is given in (3), and its graph depicted in 
Fig. 5 with alpha set to unity.    The sigmoid function maps its 
input onto the range [0,1].  This is the initial transfer function 
used in this research, with alpha (the slope of the curve) being 
a variable. 
 

 
      (3) 
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Figure 5.  Plot of the sigmoid transfer function 

 
 

III. PARTICLE SWARM OPTIMIZATION 
 

A. Description 
 
Nature itself is the most complex system known, and it works 
gracefully, almost magically.  There are millions of groups or 
communities of humans and animals that all live in harmony 
with nature.  They have survived for millions of years.  How?  
To what do they attribute their sustainability?  There is 
obviously some valuable knowledge embedded within social 
systems.  By examining the interaction of members within a 
social system, it is possible to apply the findings to other 
scientific problems. 
 
James Kennedy and Russell Eberhart did just that when they 
developed swarm theory.  Swarm theory is based on the 
collective intelligence that arises from the cooperation of 
(often unintelligent) individual members within a social 
system[14]. 
 
PSO exploits the cooperation aspect and applies it to computer 
science and engineering optimization problems.  It does this 
by modeling a social system.  In this model, the system is 
populated with individual particles representing possible 
solutions to the problem.  The particles themselves are not 
intelligent.  They do not sit down and think about the best way 
to solve the problem.  They simply follow a predefined set of 
rules.  In this aspect, they are much like Finite Cellular 
Automata.  The PSO algorithm evaluates all particles 
according to a common fitness function—a function that maps 
the state of a particle to how good of a solution it is.  The 
particle with the highest fitness is considered the best of the 

group.  All other particles then learn from this best, just as 
members of a social system learn from those around them.  No 
particle is identical, but they each take on attributes of each 
other that will help their fitness improve. 
 
 

B. PSO Model 
 
A Particle Swarm is a population of individuals each of which 
contains the appropriate amount of features or values to place 
it in a Swarm problem space.  The individuals are arranged in 
neighborhoods in which they can share information.  The 
mathematical definition of a neighborhood is “the set of points 
surrounding a specified point each of which is within a certain 
specified distance from the specified point”[dictionary.com].  
For instance the bit string “01110” is composed of 5 bits.  
Letting bit number 3 (the middle bit) be the specified point.  A 
neighborhood of size 3 would include the entire bit string, two 
to the left and two to the right.  Like ANN, these 
neighborhoods themselves can have different topologies, 
though these topologies are drastically different from the 
topologies of ANN.  Typical topologies for Particle Swarm 
neighborhoods are circular or star-shaped. 
 
In a Particle Swarm, each individual is influenced by its 
closest neighbors.  A single particle is a possible solution to 
the problem.  The particle’s position in the problem space 
defines the solution.  Particles fly though the problem space 
and adjust the trajectory based on influence from their 
neighbors. 
 
Each particle is randomly initialized to a certain position in 
the problem space.  The number of dimensions in the problem 
space is equal to the number of components there are to 
optimize.  A particle updates its position according to the 
Euler integration equation for physical movement given in (4).  
 
 

 
       (4) 

 
 
The velocity component of the Euler integration equation is 
what includes the stochastic element of the Particle Swarm.  
Each particle’s velocity vector is computed based on its 
current velocity (randomly initialized) and the velocity of the 
best particle in its neighborhood.  Not only that, but two 
stochastic variables are incorporated as well.  One of these 
variables weights the portion of the velocity vector 
corresponding to the particle’s previous velocity, while the 
other weights the portion corresponding to the velocity of the 
best particle in the neighborhood.  The sum of the two 
particles is generally a constant defined as the random range 
of a Particle Swarm[14].  The velocity vector is updated prior 
to the position vector and is given by the (5). 
 
 

  (5) 
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For a given problem, a certain number of particles (typically 
20-50) are initialized and let loose to swarm the problem 
space in search of an optimal or near optimal solution.  The 
particles continue to swarm until the exit criteria has been met. 
 
 

C. Algorithm 
 
The algorithm for a neighborhood of particles is shown in the 
pseudocode below presented by AdaptiveView[13]. 
 
/// 
/// Begin definitions of control variables 
/// 
numberOfParticles = 40 
numberOfNeighbors = 4 
maxIterations = 1000 
 
/// set limits for location changes 
deltaMin = -4.0 
deltaMax =  4.0 
 
/// set individuality and sociality 
iWeight = 2.0 
iMin = 0.0 /// low  stochastic weight factor 
iMax = 1.0 /// high stochastic weight factor 
sWeight = 2.0 
sMin = 0.0 /// low  stochastic weight factor  
sMax = 1.0 /// high stochastic weight factor 
 
/// 
/// Next 3 variables related to problem solution space. 
/// See function "test" for definition of fitness function. 
/// 
initialFitness = -100000 
targetFitness = 0 
dimensions = 4 /// dim. of solution space 
 
/// 
/// End of control variable definitions. 
/// 
  
/// set up particles' next location 
 for each particle p do { 
  for d = 1 to dimensions do { 
    p.next[d] = random(...) 
    p.velocity[d] = random(deltaMin,deltaMax) 
  } 
  p.bestSoFar = initialFitness 
} 
 
/// set particles' neighbors 
for each particle p do { 
  for n = 1 to numberOfNeighbors do { 
    p.neighbor[n] = getNeighbor(p,n) 
  } 

} 
 
/// run Particle Swarm Optimizer 
while iterations <= maxIterations do { 
  /// Make the "next locations" current and then 
  /// test their fitness. 
  for each particle p do { 
    for d = 1 to dimensions do { 
      p.current[d] = p.next[d] 
    } 
    fitness = test(p) 
    if fitness > p.bestSoFar then do { 
      p.bestSoFar = fitness 
      for d = 1 to dimensions do { 
        p.best[d] = p.current[d] 
      } 
    } 
 
    if fitness = targetFitness then do { 
      ... /// e.g., write out solution and quit  
    } 
  } /// end of: for each particle p 
 
  for each particle p do { 
    n = getNeighborWithBestFitness(p) 
    for d = 1 to dimensions do { 
      iFactor = iWeight * random(iMin,iMax) 
      sFactor = sWeight * random(sMin,sMax) 
      pDelta[d] = p.best[d] - p.current[d] 
      nDelta[d] = n.best[d] - p.current[d] 
      delta = (iFactor * pDelta[d]) + (sFactor * nDelta[d]) 
      delta = p.velocity[d] + delta 
      p.velocity[d] = constrict(delta) 
      p.next[d] = p.current[d] + p.velocity[d] 
    } 
  } /// end of: for each particle p  
} /// end of: while iterations <= maxIterations  
end /// end of main program  
  
/// 
/// Beginning of function code 
/// 
 
/// Return neighbor n of particle p 
function getNeighbor(p,n) { 
  ... 
  return neighborParticle 
} 
 
/// Return particle in p's neighborhood 
/// with the best fitness 
function getNeighborWithBestFitness(p) { 
  ... 
  return neighborParticle 
} 
 
/// Limit the change in a particle's 
/// dimension value 
function constrict(delta) { 
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  if delta < deltaMin then 
    return deltaMin 
  else 
  if delta > deltaMax then 
    return deltaMax 
  else 
    return delta 
} 
 
/// When given a particle, test() applies its coordinates 
/// to the problem and returns a fitness value. 
function test(particle) { 
  x = particle.current[1] /// dimension 1 
  y = particle.current[2] /// dimension 2 
  z = particle.current[3] /// dimension 3 
  w = particle.current[4] /// dimension 4 
  f = 5*(x^2) + 2*(y^3) – (z/w)^2 + 4 /// problem 
  if (x*y) = 0 then n = 1 else n = 0 /// favor x and y > 0 
  return 0 – abs(f) - n /// fitness value; 0 = optimal 
} 
 

D. Training Neural Networks with PSO 
 
The PSO algorithm is vastly different then any of the 
traditional methods of training.  PSO does not just train one 
network, but rather trains a network of networks.  PSO builds 
a set number of ANN and initializes all network weights to 
random values and starts training each one.  On each pass 
through a data set, PSO compares each network’s fitness.  The 
network with the highest fitness is considered the global best.  
The other networks are updated based on the global best 
network rather than on their personal error or fitness.   
 
Each neuron contains a position and velocity.  The position 
corresponds to the weight of a neuron.  The velocity is used to 
update the weight.  The velocity is used to control how much 
the position is updated.  If a neuron is further away (the 
position is further from the global best position) then it will 
adjust its weight more than a neuron that is closer to the global 
best. 
 
The particles in this context are the individual networks rather 
than the neurons.  The dimension of the hyperspace in which 
the particles reside may be found by the number of neurons in 
the network.  Thus, the positions of each neuron in a network 
effectively place a network at a certain location in the problem 
hyperspace.   
 
There are maxima and minima in this hyperspace.  Particles 
fly around the hyperspace, updating their position according 
to the best position found by their fellow particles.  Eventually 
a particle will come across optima of sorts.  When this occurs, 
it will continue to climb the hill towards the optima.  Fellow 
particles will quickly see this and adjust their positions to 
swarm towards the optima.  What ensues is that a team of 
these particles cover the optima area.  If the associated fitness 
at this optimum is acceptable, then the network stops training.  

If it a maximum has been found, but is sub-par, then the 
positions of the neurons are randomized and the hunt restarts. 
There are an infinite number of solutions for a real-number 
ANN.  PSO assures that the network will never get stuck 
trying to converge to a false maxima.  Instead, as alluded to 
previously, PSO takes on two major methods of solution 
hunting.  Namely, exploration and exploitation.  Exploration 
is the generalized search for maxima and minima.  This occurs 
with a large number of particles swarming broadly over the 
entire hyperspace.  Exploitation is the convergence on a 
particular maxima or minima.  Generally speaking, particles 
start by exploration, if a specific optimum looks particularly 
appealing, it will decide to examine it a bit closer.  This is 
when it switches to exploitation mode.  In exploitation mode, 
the position of a particle does not update as rapidly as in 
exploration.  This has the effect that the particles take a 
smaller step size, and won’t overstep a possible optimal 
solution.  This part of the algorithm is not inherent to PSO but 
is an addition to it.  It is controlled by an annealing factor 
applied to the positional update equation. 
 
The annealing factor stems from the simulated annealing 
method often used in evolutionary programming.  Basically, 
as implemented here, the annealing factor starts off near 1.  
When multiplied against the positional update equation, it has 
the effect of exploration (it allows the update of the full 
positional change).  As a particle nears an optima, it decreases 
its annealing factor (either exponentially or linearly) thus 
taking smaller steps. 
 

 

IV. PSO MEETS ANN 
 

A. Constructing a Network Swarm 
 
This research focuses around training ANN with PSO.  To do 
this, a population of networks must be constructed.  In this 
situation, each individual network is treated as a particle that 
is located in the problem hyperspace according to the weights 
of the network elements.  Generally, a population of about 20 
particles (or 20 networks) has been found to work well. 
 
This population of networks is built and initialized and then 
formed into PSO neighborhoods.  For the example 
application, a global neighborhood was found to work best 
(one in which any network is able to teach any other network).  
This construction is called the topology of the swarm system. 
 
 

B. Training the Swarm of Neural Networks 
 
After the networks have been constructed and arranged 
topologically, they begin the training algorithm.  The training 
algorithm is similar to the one given in section II, but not the 
same.  The training process is listed below. 
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1. For each network, iterate over the training data set and 
keep a running sum of the network error. 

2. Compare all of the network errors to find the best 
network in the neighborhood. 

3. If one of the networks has achieved the minimum error 
required, record its weights and exit the program. 

4. Otherwise, for each network, execute the PSO 
algorithm to update its position and velocity vectors. 

5. Loop to 1. 
 
Once a particle has achieved the required fitness, a solution 
has been found.  This particle then changes from being a 
solution searcher into a production neural network as depicted 
in Fig. 6. 
 

 
Figure 6.  Particle search of the problem hyperspace 

 

V. REACTIVE POWER CONTROL PROBLEM 
 

A. Description of Problem 
 
The voltage requirement of power systems swings depending 
on the load of the system.  This causes losses in the system.  
An effective method to control this is to inject reactive power 
to compensate for the swing.  The problem that arises with 
this solution is how much reactive power to inject, and when 
to inject it.  
 

B. Proposed Solution 
 
Power Systems are complex systems with a large number of 
control variables.  ANN have proven to be excellent tools for 
mapping complex systems to a known output.  The proposed 
solution is to construct and train a neural network to predict 
the reactive power requirements for a given power system. 
 
The training data from the aforementioned automobile plant 
consisted of the voltage and current for a given time as well as 
the required reactive power.  A network was constructed 
which used the voltage and current values as inputs to the 
network.  Network fitness, given in (6) was determined to be 
the mean square of errors for the entire training set, where 
error is defined to be the recorded reactive power minus the 
network predicted reactive power.   

 

Fitness Recorded_Value Network_Predicted_Value−( )2∑
    (6) 

 
A network is deemed usable once it has met some minimal 
requirements for performance.  The requirement used was the 
statistical calculation known as the multiple correlation 
coefficient and is given in (7).  This measurement subtracts, 
from unity, the network fitness divided by the square of the 
mean subtracted by each output.  As the network becomes 
more accurate, the resulting value approaches one. 
 

R2 1
Fitness

Recorded_Value Mean_Recorded_Value−( )∑
−

  (7) 
 

C. Implementation 
 
A Java program, called Themis, was written to read in the 
training data, construct a given number of ANN particles, and 
execute the PSO algorithm on the networks.  Themis, a Greek 
goddess, was chosen as the name because she is said to be 
“prophecy incarnate; her oracles derive from her sense of 
order and connection to nature…she personified the social 
order of law and custom, a reminder that social order is 
ultimately dependant on the natural order of the earth”[15]. 
 
Themis currently only adjusts the network weights for a given 
topology and transfer function.  However, future versions will 
add the topology and transfer function selection as a PSO 
variable which will be optimized and selected by the PSO 
algorithm rather than the user. 
 
The class collaboration diagram for the implementation code 
is shown in Fig. 7. 

 
Figure 7.  Class collaboration diagram 
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D. Results 
 
Themis was able to construct a three layer fully connected 
feed-forward network consisting of two input neurons, three 
hidden neurons, and a single output neuron.  The resulting 
networks performance was more than sufficient.  The 
correlation coefficient achieved was 0.99873.  A plot of 
recorded values versus predicted values may be seen in Fig. 8 
and Fig. 9. 
 

Recorded Power versus Neural Network Predicted Power

R2 = 0.9987
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Figure 8.  Correlation of recorded and predicted values 

 
 

Time Plot of Recorded Power and Neural Network Predicted Power
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VI. CONCLUSION 
 

It is clear that Artificial Neural Networks are a very 
powerful and accurate tool for reactive power dispatch.  Due 
to the very nature of Artificial Neural Networks, and soft-
computing in general, there is no one solution equation.  This 
requires networks to be customized for each system.  Standard 
methods require the user to choose a network topology, 
inputs, and transfer functions for a network before training.  
Particle Swarm Optimization overcomes these limitations 
because it is blind to what it is optimizing.  Any network 
parameter may be thrown into the mix along with the network 
weights to be optimized.  To date Themis offers a way of 
selecting appropriate inputs for the network, and future 
versions will support the automatic selection of topology and 
transfer function.  Themis is capable of constructing and 
training a network with a correlation greater than 0.99 in 
under a minute, placing PSO as a competitor for other top 
training algorithms. 
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